
Troubleshooting IPSK
Stefan Kronawithleitner
CWNE Essay

I. INTRODUCTION
As our wireless network is increasingly used by

devices that could be filed under the "Internet of
Things”, the desire for special SSIDs to
accommodate these devices grew. These devices
often cannot authenticate to 802.1X SSIDs or at a
captive portal on our campus networks. However,
giving each device type its own SSID is difficult to
manage and introduces a lot of beacon overhead.

The answer to this problem was to enable a new
SSID with per-device-PSKs, and I planned and
implemented our IPSK solution - storing MAC
address and PSK pairs and giving devices their own
PSK that way. WPA2-PSK is widely supported, and
the way these solutions work is entirely transparent
to the client. I created our application to manage the
passphrases, and while I was still developing and
polishing it, I already had many devices using the
solution, as this functionality was desperately
needed. This way, the solution was beta-tested by
dozens of devices, and once the application was
finished, I gave the persons who controlled the IOT
devices access to it.

II. THE PROBLEM
The rollout went well, but I did receive a few

comments that there were troubles joining the
SSID. However, after entering the MAC&SSID
again in the application, I was told it worked. The
problem description sounded like a user error, and
as this was not widespread, I decided to leave it at
that. However, a few weeks later, I got these
comments again from people I trusted would
correctly enter addresses and passphrases.

As I have never encountered these problems
before, I asked to get access to the device to
investigate when this happened the next time.

III. TROUBLESHOOTING AND SOLUTION
In this case, it was a tablet used to control lights.

The first thing I checked was the device's MAC
address, and I looked it up in the backend database,
where it was entered correctly. The whole entry in
the database looked good and matched how other
devices looked at first glance. A check in the
RADIUS logs revealed that the entry was found as
expected, and ACCESS-ACCEPT was sent back,
which is used to give the "ok" to the controller and

send the PSK for the matched device in RADIUS
attributes. I reconfigured the passphrase on the
device, ensuring it matches the DB entry.
Everything matched, but the client still failed to
connect.

So, I got a better look at what point this failed
and did a packet capture between the client and AP.
The packet capture revealed normal 802.11
authentication and association, confirming that the
client was allowed successfully. However, the 4-
way handshake was never completed. After M1
from the AP, the client sends M2, but I never saw
M3 from the AP. The AP resends M1, the client
answers with M2, and the cycle repeats.

I learned from my studies that this is evidence of
a PSK mismatch, as the message integrity check in
M2 would fail. But as I checked the passphrase
multiple times, there had to be another problem
leading to this.

I enabled all debug messages on the wireless
controller and tried authenticating again. Here, I got
t h e c r u c i a l p i e c e d u r i n g t h e R A D I U S
authentication: (ERR): RADIUS/DECODE:
parse response op decode; FAIL. This
told me there had to be an issue decoding what the
RADIUS server sent to the controller. So, my
subsequent packet capture was between the
controller and RADIUS. Looking into the attributes
of the ACCESS-ACCEPT, I spotted the issue: in the
vendor-specific attribute Cisco-AVPair, which is
supposed to read "psk=thisisapassphrase"
was just: "thisisapassphrase". The
formatting of this attribute was wrong, and the
controller did not know what to do with this simple
word, as it got no indication that this was supposed
to be a passphrase. Therefore, it used the default

M1/M2 loop in Wireshark

passphrase for the SSID, which did not match the
client’s.

As most of the clients - at this time, more than a
hundred - were working fine, I now had to find out
why this was sent wrong for this specific client.

Checking my RADIUS configuration shows that
the attribute is just taken as is from LDAP, where it
should be stored precisely in this format. After
rechecking the LDAP database, I now saw what I
overlooked: the "psk=" is missing from this entry.
As the LDAP attribute has a name, this was easy to
miss.

Now, to find out why this happens, I just had to
read the code of the administration application,
where I found an error in the method responsible
for editing an entry. As only some entries are
edited, most worked without issues. Only when
changing an existing device is the PSK written
without the "psk=" to LDAP, resulting in an
unusable entry until deleting and re-adding.

I fixed the code, edited the affected entry, and
rechecked the tablet while running a wireless
capture. This time, the 4-way handshake was
completed without issues, demonstrating that the
problem had been fixed successfully.

IV. CONCLUSION
Many times in our industry, rarely occurring

issues that seemingly fix themselves or with
obscure methods are thought of as user errors -
because they usually are, followed by driver issues
and vendor bugs. However, here I saw that there
can be hard-to-reproduce problems that need a
whole barrage of troubleshooting, including
wireless and wired packet captures and debug logs,
to track down a small error when programming the
editing function of an administrative application.
CWAP studies have helped tremendously in
interpreting captured data, to not only see what is
happening but also why this is happening.

RADIUS packet decode in Wireshark

Wrong and correct LDAP entry

